Идеи подарков. Информационный портал

Релятивистская энергия покоя. Релятивистская динамика

Второй закон Ньютона гласит, что производная импульса частицы (материальной точки) по времени равна результирующей силе, действующей на частицу (см. формулу (9.1)). Уравнение второго закона оказывается инвариантным относительно преобразований Лоренца, если под импульсом подразумевать величину (67.5). Следовательно, релятивистское выражение Второго закона Ньютона имеет вид

Следует иметь в виду, что соотношение в релятивистском случае неприменимо, причем ускорение w и сила F, вообще говоря, оказываются неколлинеарными.

Заметим, что импульс, ни сила не являются инвариантными величинами. Формулы преобразования компонент импульса при переходе от одной инерциальной системы отсчета к другой будут получены в следующем параграфе. Формулы преобразования компонент силы мы дадим без. вывода:

( скорость частицы в системе К). Если в системе К действующая на частицу сила F перпендикулярна к скорости частицы V, скалярное произведение FV равно нулю и первая из формул (68.2) упрощается следующим образом:

Чтобы найти релятивистское выражение для энергии, поступим так же, как мы поступили в § 19. Умножим уравнение (68.1) на перемещение частицы . В результате получим

Правая часть этого соотношения дает работу совершаемую над частицей за время . В § 19 было показано, что работа результирующей всех сил идет на приращение кинетической энергии частицы (см. формулу ). Следовательно, левая часть соотношения должна быть истолкована как приращение кинетической энергий Т частицы за время . Таким образом,

Преобразуем полученное выражение, приняв во внимание, что (см. (2.54)):

Интегрирование полученного соотношения дает

(68.4)

По смыслу кинетической энергии она должна обращаться в нуль при Отсюда для константы получается значение, равное Следовательно, релятивистское выражение для кинетической энергии частицы имеет вид

В случае малых скоростей формулу (68.5) можно преобразовать следующим образом:

Мы пришли к ньютоновскому выражению для кинетической энергии частицы. Этого и следовало ожидать, поскольку при скоростях, много меньших скорости света, все формулы релятивистской механики должны переходить в соответствующие формулы ньютоновской механики.

Рассмотрим свободную частицу (т. е. частицу, не подверженную действию внешних сил), движущуюся со скоростью v. Мы выяснили, что эта частица обладает кинетической энергией, определяемой формулой (68.5). Однако имеются основания (см. ниже) приписать свободной частице, кроме кинетической энергии (68.5), дополнительную энергию, равную

Таким образом, полная энергия свободной частицы определяется выражением . Приняв во внимание (68.5), получим, что

При выражение (68.7) переходит в (68.6). Поэтому называют энергией покоя. Эта энергия представляет собой внутреннюю энергию частицы, не связанную с движением частицы как целого.

Формулы (68.6) и (68.7) справедливы не только для элементарной частицы, но и для сложного тела, состоящего из многих частиц. Энергия такого тела содержит в себе, помимо энергий покоя входящих в его состав частиц также кинетическую энергию частиц (обусловленную их движением относительно центра масс тела) энергию их взаимодействия друг с другом. В энергию покоя, как и в полную энергию (68.7), не входит потенциальная энергия тела во внешнем силовом поле.

Исключив из уравнений (67.5) и (68.7) скорость v (уравнение. (67.5) нужно взять в скалярном виде), получим выражение полной энергии частицы через импульс р:

В случае, когда эту формулу можно представить в виде

Полученное выражение отличается от ньютоновского выражения для кинетической энергии слагаемым

Заметим, что из сопоставления выражений (67.5): и (68.7) вытекает формула

Поясним, почему свободной частице следует приписывать энергию (68.7), а не только кинетическую энергию (68.5). Энергия по своему смыслу должна быть сохраняющейся величиной. Соответствующее рассмотрение показывает, что при столкновениях частиц сохраняется сумма (по частицам) выражений вида (68.7), в то время как сумма выражений (68.5) оказывается несохраняющейся. Невозможно удовлетворить требованию сохранения энергии во всех инерциальных системах отсчета, если не учитывать энергию покоя (68.6) в составе полной энергии.

Может лишь отчасти удовлетворять исследователей при осуществлении математических расчетов и составлении определенных математических моделей. Ньютоновские законы только справедливы в отношении преобразований Галилея, но для всех остальных случаев требуются новые преобразования, которые нашли отражение в представленных преобразованиях Лоренца. Он ввел такие принципы и понятия для того, чтобы производить точные расчеты для взаимодействующих объектов, которые осуществляют подобные процессы на сверхбольших скоростях, близких к скорости света.

Рисунок 1. Импульс и энергия в релятивистской механике . Автор24 - интернет-биржа студенческих работ

Сама теория относительности, которая была сформулирована Альбертом Эйнштейном, требует серьезного пересмотра догм классической механики. Лоренц ввел дополнительные уравнения динамики, целью которых и были те самые преобразования классических представлений о происходящих физических процессах. Необходимо было изменить формулы таким образом, чтобы они оставались верными при переходе из одной инерциальной системы отсчета в другую.

Релятивистский импульс

Рисунок 2. Релятивистский импульс. Автор24 - интернет-биржа студенческих работ

Для того чтобы ввести понятие энергии в релятивистской механике, необходимо рассмотреть:

  • релятивистский импульс;
  • принцип соответствия.

При получении релятивистского выражения импульса необходимо применять принцип соответствия. В релятивистской механике импульс частицы можно определить скоростью этой частицы. Однако зависимость импульса от скорости представляется более сложным механизмом, нежели подобные процессы в классической механике. Это больше нельзя свести к простой пропорциональности, и эффективность расчетов складывается из дополнительных параметров и величин. Импульс представляют в виде вектора, где его направление должно полностью совпадать с направлением скорости определенной частицы. Это предусматривается при варианте симметрии, так как эквивалентность вступает в силу изотропности свободного пространства.

Замечание 1

При этом импульс свободной частицы направляется к единственному выделенному направлению ее скорости. Если скорость частиц равна нулю, то и импульс частицы также равен нулевому значению.

Скорость частицы в любой системе отсчета имеет конечную величину. Она должна быть всегда менее скорости света, которая отображается в виде буквы С, однако этот факт не способен наложить некоторых ограничений на всю величину импульса этой частицы и импульс неограниченно может возрастать.

Релятивистская энергия

Сопоставив различные методы расчетов и приемов можно найти релятивистскую энергию частиц. Известно, что очень важным свойством энергии является ее способность по превращению из одной формы в другую и наоборот. Это происходит в эквивалентных количествах и при различных внешних условиях. В этих метаморфозах состоит один из основных законов сохранения и превращения энергии. При таких явлениях исследователи установили возрастание релятивистской массы. Подобные процессы происходят при любом увеличении энергии тел, и это не зависит от определенного вида энергии, в том числе кинетической энергии. Установлено, что полная энергия тела пропорциональна его релятивистской массе. Это происходит вне зависимости от того, из каких конкретных видов энергии она состоит.

Визуально такие процессы можно представить в виде простых примеров:

  • нагретое тело будет иметь большую массу покоя, чем холодный объект;
  • деформированная механическим способом деталь также имеет большую массу, чем не подверженная обработке.

Эйнштейн уловил эту взаимосвязь между массой и энергией тела. Соответственно, что при неупругом столкновении различных частиц происходят определенные процессы по превращению кинетической энергии во внутреннюю. Ее еще называют энергией теплового движения частиц. При подобном виде взаимодействий видно, что масса покоя тела станет больше суммарной массы покоя тел в начале эксперимента. Внутренняя энергия определенного тела может сопровождаться увеличением массы пропорционально. Такой же процесс закономерен для увеличения значения кинетической энергии. По классической механике такие столкновения не предполагали образования внутренней энергии, так как не входили в понятие механической энергии.

Пропорциональность массы и энергии

Для логичного действия закона релятивистской энергии необходимо ввести понятие закономерности сохранения импульса и его соотношения с принципом относительности. Для этого требуется, чтобы закон сохранения энергии выполнялся в различных инерциальных системах отсчета.

Сохранение импульса тесно связано с пропорциональностью энергии и массы тела в любых его формах и проявлениях. Сохранение импульса не представляется возможным при замкнутой системе отсчета, когда происходит переход энергии из привычной формы в иную. В этом случае масса тела начинает меняться, и закон перестает действовать верно. Закон пропорциональности массы и энергии выражается как наиболее приближенный вывод всей теории относительности.

Инертные свойства тела в количественном выражении характеризует механику массы тела. Такая инертная масса может представлять меру инертности всего тела. Антиподом инертной массы выступает гравитационная масса. Она характеризуется способностью тела создавать вокруг себя определенное поле тяготения и действовать таким образом на иные тела.

В настоящее время равенство гравитационной и инертной массы подтверждено большим количеством опытных исследований. В теории относительности также возникает вопрос, где фигурируют понятия энергии и массы тела. Это связано с проявлением различных свойств материи. Если их подробно рассматривать в указанной плоскости, то масса и энергия в материи будет существенно различаться. Однако подобные свойства материи, бесспорно, крепко связаны между собой. В этом контексте принято говорить об эквивалентности массы и энергии, так как они пропорциональны друг относительно друга.

Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными

Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела . Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри . Масса тела , как мы обнаружили, равна не , а . Этой массой снабдили тело его составные части, чья масса покоя была ; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция. Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является кинетической энергией. Иными словами, если две частицы сближаются и при этом образуется потенциальная или другая форма энергии, если части составного тела замедляются потенциальным барьером, производя работу против внутренних сил, и т. д.,- во всех этих случаях масса тела по-прежнему равна полной привнесенной энергии. Итак, вы видите, что выведенное выше сохранение массы равнозначно сохранению энергии, поэтому в теории относительности нельзя говорить о неупругих соударениях, как это было в механике Ньютона. Согласно механике Ньютона, ничего страшного не произошло бы, если бы два тела, столкнувшись, образовали тело с массой , не отличающееся от того, какое получилось бы, если их медленно приложить друг к другу. Конечно, из закона сохранения энергии мы знаем, что внутри тела имеется добавочная кинетическая энергия, но по закону Ньютона на массу это никак не влияет. А теперь выясняется, что это невозможно: поскольку до столкновения у тел была кинетическая энергия, то составное тело окажется тяжелее; значит, это будет уже другое тело. Если осторожно приложить два тела друг к другу, то возникает тело с массой ; когда же вы их с силой столкнете, то появится тело с большей массой. А если масса отличается, то мы можем это заметить. Итак, сохранение импульса в теории относительности с необходимостью сопровождается сохранением энергии.

Отсюда вытекают интересные следствия. Пусть имеется тело с измеренной массой , и предположим, что что-то стряслось и оно распалось на две равные части, имеющие скорости и массы . Предположим теперь, что эти части, двигаясь через вещество, постепенно замедлились и остановились. Теперь их масса . Сколько энергии они отдали веществу? По теореме, доказанной раньше, каждый кусок отдаст энергию . Она перейдет в разные формы, например в теплоту, в потенциальную энергию и т. д. Так как , то высвободившаяся энергия . Это уравнение было использовано для оценки количества энергии, которое могло бы выделиться при ядерном расщеплении в атомной бомбе (хотя части бомбы не точно равны, но примерно они равны). Масса атома урана была известна (ее измерили заранее), была известна и масса атомов, на которые она расщеплялась,- иода, ксенона и т. д. (имеются в виду не массы движущихся атомов, а массы покоя). Иными словами, и и были известны. Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом же деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему указали, какой процесс произойдет. Энергию, которая должна высвободиться, когда атом урана подвергнется распаду, подсчитали лишь за полгода до первого прямого испытания. И как только энергия действительно выделилась, ее непосредственно измерили (не будь формулы Эйнштейна, энергию измерили бы другим способом), а с момента, когда ее измерили, формула уже была не нужна. Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и популярных описаний развития физики и техники. Проблема, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет.

Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.

Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии и говорить с этих нор, что полная энергия объекта равна ? Во-первых, если бы нам были видны составные части с массой покоя внутри объекта , то можно было бы говорить, что часть массы есть механическая масса покоя составных частей, а другая часть - их кинетическая энергия, третья - потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри какие-то составные части. Например, распад -мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из , потому что он распадается порой и на !



Лучшие статьи по теме